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Abstract

A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method com-

bines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method.

Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle.

By applying the direct forcing scheme, Proteus 1 eliminates the need for the determination of free parameters, such as

the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The

method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann

method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The

method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the

‘‘bounce-back’’ scheme used in the conventional LBM, the direct-forcing method provides a smoother computational

boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagran-

gian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary

nodes that are prescribed by the ‘‘bounce-back’’ scheme at every time step. It also makes computations for particles

of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This

new method has been validated by comparing its results with those from experimental measurements for a single sphere

settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the

settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary con-

ditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the par-

ticles motion is significantly hindered. Under the periodic boundary conditions, the particles move faster. The
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simulations show that the sedimentation characteristics in a box with periodic boundary conditions at the two sides are

very close to those found in the sedimentation of two-dimensional circular particles.

� 2004 Published by Elsevier Inc.
1. Introduction

Particulate flows have numerous industrial and scientific applications, such as sand storms, river sedi-

ment resuspension and transport, blood clogging and cell transport in arteries and veins, fluidized beds

in chemical reactors, water treatment, etc. There are three fundamental and different approaches for the

study of particulate flows: The first one is the continuum model, in which both the fluid phase and the solid

phase are treated as continuous media. The continuum model requires one to know the drag coefficient and

the apparent viscosity of the solid phase. The second approach is the discrete particle model. It treats the

solid phase as separate particles that interact with the flow and traces the position and velocity of all the
particles by solving a Lagrangian equation of motion. The fluid phase is still considered as a continuum

phase, and the effects of the solid phase are included by adding mass and force terms into the continuity

and momentum equations of the fluid. The third approach is the direct numerical simulation (DNS). It ac-

counts for the solid–fluid interaction by solving the Navier–Stokes equations for the fluid phase and the

initial value problem for the motion of the particles simultaneously [7,8]. With the rise of computer power,

the DNS method is becoming a more enabling and popular approach to study complex particulate flow

problems.

The conventional direct numerical simulation methods, such as the finite volume (FVM) and finite ele-
ment methods (FEM) are not very efficient in simulations of particulate flows with a large number of par-

ticles. The main obstacle with these methods is the need to generate new, geometrically adapted grids, a

very time-consuming task especially in three-dimensional flows. Methods such as Stokesian dynamics

(SD) that was developed by Brady and Bossis [4] and the boundary element method (BEM) essentially ne-

glect the fluid inertia effects and can only be applied to particulate flows under creeping flow conditions.

Kalthoff et al. [18] proposed a method that incorporates analytical solutions for the region near the particle

surface, with some parameters determined by matching the outer flow conditions. Hence, they are able to

determine the forces on particles based on the analytical solutions. More recently, Zhang and Prosperetti
[28] adopted the same idea in the ‘‘PHYSALIS’’ method. It is evident that this method requires the exist-

ence of accurate analytical solutions for the motion of particles. Such transient solutions are only available

for particles with simple shapes at creeping flow conditions [22].

Ladd [19,20] successfully applied the Lattice Boltzmann method (LBM) to particle–fluid suspensions.

The LBM overcame the limitations of the conventional finite volume and finite element methods by using

a fixed, non-adaptive (Eulerian) grid system to represent the flow field. Since then, the LBM has proven to

be a robust and efficient method to accurately simulate particulate flows with a small or a large number of

particles [2,5,10,11,21].
When the LBM is used to simulate particle–fluid interaction problems, the no-slip condition on the par-

ticle–fluid interface is realized by the so-called ‘‘bounce-back’’ rule [20], and the particle surface is repre-

sented by the so-called ‘‘boundary nodes,’’ which are essentially a set of mid-points of the links between

two fixed grids, in which one of the grid points is within the fluid domain and the other is within the solid

domain. This arrangement causes the computational boundary of a particle to be defined by step-wise

scheme. In order to represent a smooth boundary and to accurately represent the shape of any particle,

it is necessary to use a large number of lattice points. In addition, when a particle moves, its computational

boundary changes and varies in each time step. This introduces fluctuations in the forces that act on the
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particle and limits the ability of LBM to solve particle–fluid interaction problems at very high Reynolds

numbers.

Peskin [24] developed the immersed boundary method (IBM) in order to model the flow of blood in the

heart. This method uses a fixed Cartesian mesh for the fluid, which is composed of Eulerian nodes. How-

ever, for the solid boundaries, which are immersed in the fluid, the IBM uses a set of Lagrangian boundary
points that are advected by the fluid–solid interactions. This method is especially suitable for the simulation

of the effect of deformed immersed boundaries and has been widely used in biological fluid dynamics.

Fogelson and Peskin [12] have showed that this method may also be employed to simulate flows with sus-

pended particles, whether they are deformable or not.

Höfler and Schwarzer [17] presented a finite-difference method for particle-laden flows by adding a con-

straint force into the Navier–Stokes equations to enforce rigid particle motions, with the constraint force

being determined by a penalty method. Goldstein et al. [15] used the so-called adaptive or feedback forcing

scheme to model the no-slip conditions on a stationary boundary. This technique necessitates the use of two
free parameters that must be chosen, based on the flow conditions. In the recent years, the concept of IBM

has been employed into the FEM. Glowinski et al. [13,14] developed the fictitious domain method (FDM)

by using Lagrange multipliers to enforce the rigid body rotation and the no-slip boundary condition be-

tween the particle surfaces and the fluid. They were able to apply this method in order to simulate a flow

system with 1024 spherical particles [14]. Among the other approaches, the group leaded by Tryggvason has

successfully applied the control volume method with front-tracking to the solution of a large number of

bubbles in multiphase flow. Many impressive results from this method appear in a recent review [27].

Ten Cate et al. [26] used an adaptive-forcing scheme with the LBM to simulate the sedimentation of a
single sphere in an enclosure. Feng and Michaelides [9] combined the IBM and the LBM by computing the

force density through a penalty method in the simulations of particulate flows. In this method that has been

named IB-LBM, the particle boundary is treated as a deformable medium with high stiffness. Thus, a small

distortion of the particle boundary yields a force that tends to restore the particle into its original shape.

The balance of such forces, together with the other external forces exerted on the particle are distributed

into the Eulerian nodes of the grid and the flow fields with a body force are solved over the whole

fluid–particle domain by using the LBM. This method has the disadvantage that it requires the a priori

selection of the stiffness parameter, based on the specific problem to be solved.
The key point of the success of both LBM and IBM is that, instead of re-meshing the fluid domain, they

both use a fixed mesh to represent the fluid field. In the LBM, the moving boundaries are approximated by

the fixed points on the grid, which are essentially the midpoints of the boundary links if the bounce-back

rule is used to implement the no-slip boundary condition. Hence, the moving boundaries are described by

Eulerian points. In the IBM, the moving boundaries are normally represented by a set of Lagrangian

boundary points, which are advected by the fluid.

In this paper, we develop a new computational method called Proteus, which combines the direct forcing

and the lattice Boltzmann methods. Proteus makes use of Eulerian lattice nodes for the fluid flow field and
Lagrangian boundary nodes to represent particles or moving-boundary surfaces. Unlike the penalty

method we have employed in our previous study [9], this method applies the direct forcing scheme, which

was originally proposed by Mohd-Yusof [23] for fixed complex boundaries. This adoption eliminates the

need for the determination of the free parameter for the stiffness coefficient and makes the method much

more straightforward and efficient. In addition, Proteus allows us to implement the rigid-body conditions

inside a particle in a more convenient manner.

In the first part of this paper, we give a brief description of the method, and the particle-collision rules we

have used. We then implement the method to solve particulate flow problems in three-dimensions. For the
validation of the method, we simulate a sphere settling in an enclosure and compare the results with the

experimental measurements taken by ten Cate et al. [26]. Then we study a single particle settling under var-

ious flow conditions. Finally, we apply Proteus to simulate the sedimentation of 1232 spherical particles
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under two different boundary conditions: the first is the no-slip boundary conditions and a small gap at the

front and rear sides; the second is periodic boundary conditions at the front and rear sides.
2. The Proteus numerical method

2.1. Description of the method

Akey feature ofProteus is that it resolves the no-slip boundary conditions in the numerical scheme by add-
ing a force density term in the Navier–Stokes equations. It computes the force density via a direct forcing

scheme, and then solves for the flow field by using the well-established processes of the LBM. The latter meth-

od, which was developed in the late 1980s and early 1990s, has been successfully used in several types of par-

ticulate flows by Ladd [19,20], Feng andMichaelides [10,11] and many others. The basic concept of the LBM

is to decompose the flow domain into a regular lattice grid and to model the fluid as a group of fluid particles

that are only allowed tomove between lattice nodes or stay at rest. In order to apply the conventional LBM to

particulate flows, the boundary of the solid particles is realized in the method by using the ‘‘bounce-back

rule,’’ according to which, the fluid particles will bounce back when they run into a solid boundary.
One of the difficulties with this approach is that it uses boundary nodes, which are at the midpoints of

boundary links. We will call these nodes Eulerian boundary nodes since they are fixed with respect to the

spatial coordinates. However, since the particles move in the fluid matrix, the Eulerian nodes that represent

the surface of the particles change after every time step. As a result, the actual computational boundaries of

the particles change at each time step. This representation of a surface causes significant fluctuations of the

computational boundaries, especially when a relatively small number of lattice nodes are used to represent

the surface of the particles.

The determination of the Eulerian boundary nodes that represent the surface of the particles is a non-
trivial task especially when the particles do not have simple shapes. However, the worst disadvantage of the

‘‘bounce-back’’ rule is that, at higher Reynolds numbers, it either fails to achieve accurate results or would

not converge. This disadvantage requires a finer updating scheme for particle velocity and position during

one lattice time step.

In order to solve this problem one may use the IB-LBM [9] and represent the particles� surfaces by using

a set of independent Lagrangian boundary points that are attached to the boundary of the particles. We call

these the Lagrangian boundary nodes (or points) to differentiate them from the Eulerian points described

above. The Lagrangian boundary nodes represent the surface of the particles and move inside the Eulerian
matrix as the particles move inside the fluid. The result is that the computational boundary of the particles

is smooth and that the exact locations of the Lagrangian boundary points are easily determined if one keeps

track of the transformation matrix. This constitutes a major advantage of the IB-LBM [9].

In the IBM, the existence of a solid body is represented by its effect on the fluid. This is enforced by intro-

ducing a fluid body force density term into the momentum equations. Let us consider a particle with a

boundary surface, C, immersed in a three-dimensional incompressible viscous fluid with a domain, X .

The particle boundary surface, is represented by the Lagrangian parametric coordinates, s, and the flow

domain, X, is represented by the Eulerian coordinates x. Hence, any position on the particle surface
may be written as x = X(s, t). Let F(s, t) and f(x, t) represent the particle surface force density and the fluid

body force density. Then the no-slip boundary condition is satisfied by enforcing the velocity at all bound-

aries to be equal to the velocity of the fluid at the same location:
oX s; tð Þ
ot

¼ uðXðs; tÞ; tÞ; ð1Þ
where u is the fluid velocity.
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The governing equations for the fluid–particle composite are as follows:
q
ou

ot
þ u � ru

� �
¼ lr2u�rp þ f ; ð2Þ

r � u ¼ 0; ð3Þ

f x; tð Þ ¼
Z
C
F s; tð Þd x� X s; tð Þð Þds ð4Þ
and
oX

ot
¼
Z
X
u x; tð Þd x� X s; tð Þð Þdx ; ð5Þ
where p (x, t) is the fluid pressure q is the fluid density and l the fluid viscosity.

Eqs. (2) and (3) are the Navier–Stokes equations for viscous incompressible flow. Eq. (4) shows how the

force density of the fluid, f(x, t), may be obtained from the immersed boundary force density, F(s, t),
through the integration over the immersed boundary. Eq. (5) is essentially the no-slip condition at the inter-

face, since the particle moves at the same velocity as the neighboring fluid.

In the numerical implementation of the IBM the whole fluid domain, including the parts that are occu-

pied by immersed bodies, is divided into a set of fixed regular nodes. Since these fluid nodes are not moving
with the flow, we will call them Eulerian nodes. The immersed boundary of the particles is discretized by a

group of boundary points that move under the action of the fluid. We will call these boundary nodes

Lagrangian nodes. It must be pointed out that in the IBM, the Lagrangian nodes do not necessarily coin-

cide with the Eulerian nodes.

In order to solve the fluid field with a body force density, f(x, t), the fundamental LBM equation is mod-

ified by adding a term to the collision function and becomes as follows:
niðxþ ei; t þ 1Þ � niðx; tÞ ¼ � 1

s
niðx; tÞ � nð0Þi ðx; tÞ
h i

þ 3

2
wif � ei: ð6Þ
Here, ni(x,t) is fluid particle distribution function in the ith direction, nð0Þi ðx; tÞ is the equilibrium distribu-

tion function, s is the relaxation time, and t is the lattice simulation time. In this paper, a three dimensional

15 bit (3D15) LBM model has been used, and the notation for the subscripts are as follows: i = 1–6 corre-

sponds to the fluid particles moving to their four nearest neighbors along the axial directions. The values

i = 7–13 signify that the fluid particles move to their neighbors along the diagonal directions. Finally, i = 0
correspond to fluid particles being at rest. The vectors ei represent the above fifteen directions. The details

of the implementation of this method may be found in Feng and Michaelides [10]. The parameters wi are

weighting factors (or coefficient constant) that depend on the LBM model chosen to be used. For example

the weighting factors for a 2-D problem are: w0 = 4/9, w1 = w3 = w5 = w7 = 1/9, and w2 = w4 = w6 = w8 = 1/

36 [19]. Finally, the dimensionless relaxation time, s, is related to the dimensionless kinematic viscosity of

the fluid by the expression:
m ¼ 2s� 1ð Þ=6: ð7Þ
The relaxation time that is chosen is related to the physical time step through the following relationship:
Dt ¼ Dxð Þ2 m
mr
; ð8Þ
where Dx is the physical grid step, and mr is the physical fluid kinematic viscosity.
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It is known that the numerical error in the LBM is proportional to the square of a computational Mach

number, Ma [19]. Therefore, it is important to choose a relaxation time that keeps the Mach number small,

that is:
Ma � U c

1ffiffi
3

p Dx=Dtð Þ ¼
U cDx
mr

2s� 1

2
ffiffiffi
3

p
� �

� 1; ð9Þ
where Uc is the characteristic velocity of the actual flow.

As mentioned above, in the Proteus method we use a set of Lagrangian boundary points to describe the

particle boundary. Eq. (2) is also valid at these Lagrangian boundary points and, hence, the force density at

these points may be written as follows:
f ¼ q
ou

ot
þ u � ru

� �
� lr2uþrp: ð10Þ
If we assume that the velocity and pressure fields at the time step t = tn are known, then we have an ex-

plicit scheme to determine the force term at these Lagrangian boundary points at time t = tn+1, which is as

follows:
f ðnþ1Þ
i ¼ q

uðnþ1Þ
i � uðnÞi

Dt
þ uðnÞj uðnÞj;i

 !
� luðnÞi;jj þ pðnÞ;i : ð11Þ
In the last equation, the Einstein notation for subscripts and derivatives is used.

In order to impose the boundary condition that at t = tn+1, the velocity on the immersed Lagrangian

boundary points is equal to the velocity of the particle at the same point, UP ðnþ1Þ
i , the density force at these

points should be given by the following expression:
f ðnþ1Þ
i ¼ q

UPðnþ1Þ
i � uðnÞi

Dt
þ uðnÞj uðnÞj;i

 !
� luðnÞi;jj þ pðnÞ;i : ð12Þ
The above equation is called direct forcing, since it may be used to evaluate the force density at the Lagran-

gian boundary points without introducing any pre-defined parameters. In the original presentation of the
method by Mohd-Yusof [23] and Fadlun et al. (2000), instead of creating a set of Lagrangian boundary

points, the force density was computed for a regular node. This node was a point where the velocity was

defined when a staging grid was used, or simply a velocity point next to the boundary. The flow velocity

at this point is obtained by interpolating the velocities at its neighboring velocity points and the intersection

point of the solid boundary and a grid line. By doing this, one is able to achieve a second-order accurate

direct-forcing scheme. However, in the case of particulate flows where the particle boundary is constantly

moving, it becomes a formidable task to compute the intersection points between the particle boundary sur-

faces and the grid lines.
Fig. 1 shows the boundary points for a two-dimensional particle boundary. The velocities at these

Lagrangian points at the current time step t = tn may be computed using Eq. (5). Alternatively, as used

in the simulations by Proteus, one may employ a bilinear interpolation using the velocity values of four

neighboring grid points for two dimensional flows or eight neighboring grid points for three dimensional

flows.

The calculated force density using Eq. (12) is at a Lagrangian boundary point, and we have to spread it

into the neighboring Eulerian nodes using a spreading function. In the adaptive forcing scheme, the fluid

density force is also computed at boundary points. Goldstein et al. [15] explained this spreading as the
smoothing the boundary surface and used a Gaussian function to smoothen the boundary within one grid
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spacing. In this work, we use a delta function, which will be discussed later, to spread the force density to

the nearby Eulerian nodes.

The use of the force spreading technique is consistent with the theory of the immersed boundary method.

The procedure employed may be explained as follows.

For simplicity, we consider a two-dimensional problem with a particle boundary C. We also consider a

small area e around a Lagrangian boundary point si, which is the coordinate corresponding to a particular

Lagrangian boundary node i, as shown in Fig. 2. By integrating the force density within the small area, we
obtain:
Z

e
f X s; tð Þð ÞdA ¼

Z
C
F s; tð Þ

Z
e
d x� X s; tð Þð ÞdA

� �
ds ¼

Z
Ce

F s; tð Þds: ð13Þ
The relation between the flow force density, f(X(s, t)), and the surface force density, F(s, t), of Eq. (4) was
used in Eq. (13). The latter implies that the flow force density integral for a small area e is equal to the

boundary force density integral over the boundary element Ce, which is the intersection of this small area

and the whole particle boundary C (from point C1 to point C2 in Fig. 2). We envision that the flow force on

the body is distributed in a small area along the particle boundary, C, with a force density given by the

function f(X(s, t)). In the numerical implementation, we consider a small area of this band represented

by a Lagrangian boundary node si. Then the flow force density on this area is approximated by the value

at this boundary node, f(X(si, t)). For a uniform grid with grid spacing dx = dy = d, it is reasonable to as-
sume that this ‘‘area of influence’’ represented by the node si is dsd (where ds is the length of the small
Fig. 2. A schematic for the force spreading.
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boundary element Ce). Then the force acting on this area is f(X(sit))dsd and the integral of the surface force

density over the small area may be approximated as
Z
Ce

F s; tð Þds � f X si; tð Þð Þdsd: ð14Þ
For the three dimensional case, one needs to consider a small volume around a Lagrangian point. Hence,

the line integral should be replaced by a surface integral over a small boundary surface area intersected by

the small volume. Also, ds should be replaced by dA, the area of this boundary surface element.

By using Eq. (14) as an approximation for the surface force density integral, the flow force density at

each Eulerian node is determined from Eq. (4). This is the same procedure for the force spreading as if

a delta function were used for the spreading of the force. Eq. (14) also provides an approach for the com-

putation of the force acting on the particles, since the total force acting on a particle is equal to the sum of
the forces acting on each surface element.

A separate method to compute the force acting on the particles is by integrating the fluid stress over the

particle surface:
F PðnÞ
i ¼

I
C

rðnÞ
ij nj dS ¼

I
C

�pðnÞdij þ l uðnÞi;j þ uðnÞj;i

� �� �
nj dS: ð15Þ
When the direct forcing method is also implemented for the internal fluid, so that the internal fluid fol-

lows a rigid-body motion, then the surface integral is taken only over the external surface. However, when

the internal fluid is allowed to be freely developed, the surface integral should take into consideration both
the external and the internal surface. After calculating the forces on particles by using the summation of the

forces on each element and the direct integration of the shear force over the particle surface, we have found

that there is a negligible difference between the computed values by using these two different approaches.

It must be pointed out that these spreading techniques are only accurate to the first-order, which is the

same order of accuracy of the bounce-back rule in the conventional LBM implementation. Nevertheless,

the method still provides reasonably accurate results for particulate flows, as will be seen in the examples

that will follow.
2.2. Three-dimensional implementation

The direct-forcing method combined with LBM is implemented in three-dimensional particulate flows.

The first issue arising is how to set up the Lagrangian boundary points in order to accurately represent the
particle surface. For a spherical particle in three dimensions, it is impossible to find evenly distributed

boundary nodes that represent the surface of the sphere. For this reason, we use a number of strips, with

the width of strip being comparable to the grid spacing. Each strip is composed by a number of evenly dis-

tributed points. The number of the points in each strip is chosen in a way that the spacing between two

neighboring points is approximately equal to the width of the strips. In the simulations we conducted in

this paper, the surface area of a Lagrangian boundary point is typically not larger than two in lattice units.

As we mentioned earlier, the forces are computed at the Lagrangian boundary nodes. For the fluid to be

affected by them, the forces need be spread to the Eulerian nodes. For this reason, the force corresponding
to each Lagrangian boundary node is spread into its neighboring Eulerian nodes. If the spreading Eq. (17)

is used, this spreading occurs within a distance of two lattice units from each Lagrangian node. This process

is performed for each Lagrangian boundary node, and the force on a Eulerian node is the summation of all

the contributions from these Lagrangian boundary nodes. The spreading process can be stated mathemat-

ically as follows: For a system of N number of particles, with M Lagrangian boundary points used to rep-

resent each particle surface, the flow force density at a Eulerian node xi may be computed as follows:



28 Z.-G. Feng, E.E. Michaelides / Journal of Computational Physics 202 (2005) 20–51
f xi; tð Þ ¼
XN
n¼1

XM
m¼1

f xmn tð Þ; tð ÞdAmnD xi � xmn tð Þð Þ; ð16Þ
where xmn is the position of the mth Lagrangian boundary point for the nth particle at the time t, dAmn is
the surface represented by boundary point, xmn, and the function D(r) is a continuous kernel distribution

function that approximates the delta function. The choice of this function must meet certain criteria,

which were outlined by Peskin [25]. For the three-dimensional simulations the following equations are

used:
dðrÞ ¼
1
4

1þ cos p rj j
2

� �� �
; rj j6 2;

0; rj j > 2

(
ð17Þ
and
D x� xmnð Þ ¼ d x� xmnð Þd y � ymnð Þd z� zmnð Þ: ð18Þ

When Proteus is used to simulate the particle motion in the fluid it is necessary to compute the force and

torque on each particle. The force on a particle includes forces such as the gravity/buoyancy force as well

as the particle collision forces, Fcol
i . Hence, the total force exerted on the ith particle may be written as

follows:
F i ¼ 1� qf

qs

� �
Mig þ

I
Si

r � n dS þ Fcol
i ; ð19Þ
whereMi is the mass of the ith particle. It must be pointed out that the LBM as well as Proteus compute the

total drag force and not its two components, the form and the viscous drag. It is well documented in the

literature that the LBM computes accurately the total drag force. We conducted several simulations on

the total force using the conventional LBM as well as Proteus and found out that the two methods are

consistent and give identical results for the drag force.

The torque on a particle is computed by using the following expression:
T i ¼
I
Si

x� xið Þ � ðr � nÞdS: ð20Þ
In order to minimize the skewing effect (drift) due to the accumulation of the numerical error, when one
uses the rotation matrix of the particle, a unit quaternion is used to represent the rotation of the particles.

In our three dimensional implementation, we use a Runge–Kutta scheme to solve the following set of dif-

ferential equations:
d

dt

X tð Þ
q tð Þ
P tð Þ
L tð Þ

2
6664

3
7775

i

¼

v tð Þ
1
2
- tð Þq tð Þ
F tð Þ
T tð Þ

2
6664

3
7775

i

; ð21Þ
with initial conditions given as
x 0ð Þ
q 0ð Þ
P 0ð Þ
L 0ð Þ

2
6664

3
7775

i

¼

xi;0

qi;0

mivi;0

I i-i;0

2
6664

3
7775; ð22Þ
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where, qi(t) is the unit quaternion form for the rotation matrix of ith particle, with its initial value is deter-

mined from the initial rotation matrix; Pi(t) is the linear momentum of the ith particle; and Li(t) is the

angular momentum of the ith particle.

At any given time, the translational and rotational velocities of a spherical particle are computed by

using the following expressions:
vi tð Þ ¼
Pi tð Þ
Mi

; -i tð Þ ¼ I i tð Þ�1
Li tð Þ; ð23Þ
where Ii(t) is the inertia matrix of the ith particle in the current coordinate system. This is related to the

moment of inertia matrix Ii0 of the initial coordinate system of the ith particle and the rotation matrix
of the ith particle, Ri(t), by the expression:
I i tð Þ ¼ Ri tð ÞI i0Ri tð ÞT: ð24Þ

The numerical scheme employed is capable to simulate the motion and rotation of particles with any

arbitrary shape. In the special case of spherical particles, Ii(t) is a constant diagonal matrix:
I i ¼

2
5
Mir2i

2
5
Mir2i

2
5
Mir2i

2
64

3
75; ð25Þ
in which ri the radius of ith particle.

One of the disadvantages of the conventional LBM is that when the bounce-back rule used in particulate

flows, the rigid body motion inside the particle is not enforced a priori. Therefore, the problem that is

solved is actually the approximate interaction between a fluid and a solid shell. The shell has the same
boundary as the particle, but the contribution of the interior mass of the fluid is ignored. Generally it is

believed that this contribution from the internal flow is not significant, as discussed by Ladd (2001). In

the present method with the direct-forcing scheme, we treat the particles as volume-less shells filled with

the same fluid. Since the spreading of force at the boundary nodes is not limited to the flow outside the

particles, the internal flow is allowed to be developed. To remedy this deficiency, we may enforce the rigid

body motion for the internal fluid by setting up a certain number of internal Lagrangian points. The veloc-

ity at these points is determined by the rigid body motion of the particle. Hence, one of the advantages of

Proteus is that it enforces the rigid body motion for the interior flow in particles in a straightforward way.
This is a desired attribute of any method that handles solid particles. This fact notwithstanding, it must be

pointed out that in our simulations of a single particle sedimentation where the flow is non-rotational we

have confirmed the observation of Ladd (2001) that the effect of the internal flow on the particle motion is

not significant. It would be of interest to employ Proteus and further examine this effect with different types

of flows and higher Reynolds numbers.
2.3. Particle collision technique

In any type of particulate flows collisions between particles are unavoidable, especially when the flow is

dense and the particles move at high Reynolds numbers. The correct handling of these collisions in any di-

rect numerical simulation (DNS) is very important for the study of all particulate processes. Generally, the

grid used in a DNS study is not fine enough to handle the lubrication force that develops between the par-

ticles or between particles and a solid boundary. Therefore, an artificial mechanism is necessary to be intro-

duced in the numerical scheme in order to account for the repulsive force during collision processes.

Without such a mechanism, it is likely that the particles will penetrate significantly into each other�s com-

putational boundary, thus, rendering the results meaningless.
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In our previous study [9], we employed a collision technique by introducing a repulsive force when the

gap between two particles is lower than a given threshold, the so-called ‘‘safe zone.’’ This artificial short-

range repulsive force is added as an external force, with the functional form that was developed by Glowin-

ski et al. [14]:
FP
ij ¼

0; xi � xj

�� �� > Ri þ Rj þ f;

cij
ep

xi�xjk k�Ri�Rj�f

f

� �2
xi�xj

xi�xjk k

� �
; xi � xj

�� ��6Ri þ Rj þ f:

8><
>: ð26Þ
The parameter, cij is the force scale. This is chosen to be the buoyancy force on the particle for the sedimen-

tation problems considered here. Of the other parameters, eP is the stiffness parameter for collisions, Ri and
Rj are the radii of two particles, respectively, and f is the threshold or ‘‘safe zone,’’ which is specified in

advance. Similarly, the repulsive force between a particle and a wall is given by the reflection method as

follows:
FW
ij ¼

0; xi � xi;j

�� �� > 2Ri þ f;

cij
eW

xi�xi;jk k�2Ri�f

f

� �2
xi�xj

xi�xjk k

� �
; xi � xi;j

�� ��6 2Ri þ f;

8><
>: ð27Þ
where xi, j is the position of a fictitious particle Pi, j which is located in a symmetric positions at the other side

of the wall Wj and eW is another stiffness parameter. Glowinski et al. [14] provided the justification and an

extensive discussion on how to choose these stiffness parameters.

This collision technique allows particles to overlap when the stiffness parameter eP is very large, that is,

when the particles undergo ‘‘soft’’ collisions. For ‘‘soft’’ collisions, the partial overlapping of particles may

be significant when a large number of particles undergo a packing process. The particles at the bottom,
which have to bear the load of the particles above, will exhibit the maximum overlapping. To counteract

this overlapping, one has to choose a higher value for the repulsive force when the collision scheme given in

Eq. (26) is used. This results in ‘‘hard collisions,’’ which are accompanied by undesirable side effects.

To resolve this issue, we employ a new collision scheme in the present paper. This new approach chooses

the repulsive force by considering the following situations: before the two particles contact, a repulsive force

given by Eq. (26) is used; when the two particles start to overlap, a higher spring force is applied. This force

is proportional to the overlapping distance of two particles, and typically is much larger than the repulsive

force without overlapping. For two spherical particles, this collision force has the following form:
FP
ij ¼

0; xi � xj

�� �� > Ri þ Rj þ f;

cij
ep

xi�xjk k�Ri�Rj�f

f

� �2
xi�xj

xi�xjk k

� �
; Ri þ Rj < xi � xj

�� ��6Ri þ Rj þ f;

cij
eP

xi�xjk k�Ri�Rj�f

f

� �2

þ cij
EP

RiþRj� xi�xjk kð Þ
f

 !
xi�xj

xi�xjk k

� �
; xi � xj

�� ��6Ri þ Rj;

8>>>>>>><
>>>>>>>:

ð28Þ

in which EP is a smaller parameter than eP to ensure a much larger spring force. With this type of force the

overlapping of two particles is low. The first term in the last function of Eq. (28) is added so that the col-

lision force will be continuous at particles gap (Ri + Rj � ixi � xji) = 0.

The advantage of the present collision scheme is that it enables us to use a small repulsive force for par-

ticles sedimentation before packing and the larger spring force for particles in the packing process. When
particles start the sedimentation process and before packing, the small repulsive force will be enough to

repel the two particles and this will reduce unwanted side effects by the large repulsive force. When the
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particles start packing, the spring force will take effect to prevent large particles penetrating among each

other.
3. Validation of the method

3.1. Simulation of a sphere settling in a wide enclosure

Regarding the validation of the method, it must also be pointed out that the convergence of the compu-

tational results with respect to the LBM nodes has been well documented by many previous researchers,

such as Ladd [20]. We are adding here the simulation results of the present method with respect to the num-

ber of the surface nodes. This clearly shows that for a sphere of diameter 15 lattice units, a mere 100 bound-

ary nodes used to represent its surface will provide very good results. Thus, we compared our simulation
results for a group of spherical particles settling in an enclosure, with the experimental measurements by ten

Cate et al. [26] who measured the trajectories and velocities of particles experimentally using a PIV system.

They also obtained numerical simulation results for the process using the LBM that was combined with an

adaptive forcing scheme.

We consider the case of a spherical particle settling in a box of dimensions 10 · 10 · 16 cm3. The particle

commences its motion at a height H = 12 cm from the bottom, as depicted in Fig. 3. The fluid density in the

simulations is in the range from 960 to 970 kg/m3, and the dynamic viscosity from 0.058 to 0.353 N s/m2.

The diameter of the particle is 15 mm and its density 1120 kg/m3. Table 1 lists the fluid properties used in
the experiments, and the Reynolds numbers based on the measured velocities, together with the parameters

used in our simulations. The enclosure is simulated using 100 · 100 · 160 grid points, and the particle is

outlined by 15 lattice grid points; the grid step is Dx = 1 mm.

Regarding the computational cost of the current method, it is comparable to the cost of the conventional

LBM. Most of this computational time is associated with the lattice nodes [10,20]. In our simulations for a

single particle, we have found out that the number of surface nodes does not play a significant role in the

computational time. For example, for the simulation of one particle with d = 15 in an enclosure of

100 · 100 · 160 lattice units, the computational time increased by only 4% when the number of surface
nodes increased from 68 to 262. Fig. 4 shows this comparison of the results of the method by using different
Fig. 3. Schematic diagram for a single particle settling in an enclosure.



Table 1

Fluid properties in the experiment and parameters used in simulations

qf (kg/m
3) lf (10

�3 N s/m2) Re s Dt (10�4 s)

Case E1 970 373 1.5 0.9 3.47

Case E2 965 212 4.1 0.9 6.07

Case E3 962 113 11.6 0.8 8.51

Case E4 960 58 32.2 0.65 8.28

Fig. 4. Comparison of particle setting velocities at Re = 11.6 using a different number of Lagrangian boundary nodes.
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numbers of Lagrangian points for the representation of a the surface of the particles. The figure depicts the

settling velocities of a sphere for the case E3 (Re = 11.6), when three different numbers of surface boundary

nodes 68, 262 and 572 are used. The results show not only good convergence with respect to the resolution

of boundary surface nodes, but also indicate that satisfactory results may be achieved even with 68 bound-

ary nodes. For the system examined that only has one particle, the difference in the computational cost is
not significant between these three cases.

Figs. 5 and 6 show the particle trajectories and settling velocities between the experimental measure-

ments and the numerical results from Proteus for four different Reynolds numbers, based on the terminal

velocity of the sedimentation process, that range from 1.5 to 32.2. It is observed that the simulation results

for both the particle velocity and trajectory agree well with the experimental measurements. The slowing of

the particles and their final rest at the end of the process are due to the presence of the bottom wall. The

simulated trajectories agree very well with the experimental measurements and the particle velocity differ-

ence is always less than 8%.
It must be pointed out that, in the numerical simulation conducted by ten Cate et al. [26] the so-called

‘‘calibrated diameter’’ was used for the computation of the force on the particles. This calibration is accom-

plished by comparing the numerical results for the drag force with analytical results. Thus, the drag force



Fig. 5. Comparisons between trajectories by simulations and measurements.

Fig. 6. Comparisons of the measured and simulated settling velocity.
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on a stationary sphere in a periodic cell is obtained. Then the corresponding diameter for the sphere is com-

puted from the analytical solution that renders the drag force equal to the one obtained from the numerical

solution. An obvious drawback of this method is that by adjusting the calibrated diameter, the method also
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modifies all the other computational errors regardless of their origin. Another drawback is that we only

have accurate analytical solutions for the drag force at very low Reynolds number flows [22]. Therefore,

the calibration is done for creeping flows, while the method may be used at high Reynolds numbers. In

addition, the calibrated diameter does not only depend on the particle ‘‘input’’ diameter, but it also depends

on other parameters of the simulation, a fact that makes the calibration process complicated and somehow
vague. Because of this, it was observed by ten Cate et al. [26] that the calibrated diameters could be as much

as 50% larger than the input diameters of the simulations. The simulations that are shown in the following

sections do not require any calibration on the size of the particles.
3.2. Sedimentation of a sphere in a narrow enclosure

We have also modeled the sedimentation of a single particle in a narrow rectangular enclosure. This was

done for the validation of the computational method as well as for estimating the accuracy of the compu-

tations when the diameter of the particles is only 8 lattice units. The dimensions of the enclosure are 1 cm

length, 1 cm height, which corresponds to a grid of 128 · 128 lattice units. The diameter of the particle is

0.0625 cm and the width of the enclosure is variable in this computation, ranging from 1.5d to 3d. The phys-

ical properties of the fluid are very close to the properties of pure water. The fluid density is qf = 1000 kg/
m3, and the particle/fluid density ratio is 1.01. The relaxation time in this case is s = 0.9915 and each lattice

time step corresponds to a physical time of 0.001 s. Hence, the kinematic viscosity of the fluid is 0.001 kg/

ms.

Two different boundary conditions for the sides of the enclosure are studied:

(a) The front and rear are solid walls.

(b) The front and rear surfaces are periodic boundaries.

For each boundary condition, we perform computations for three different widths of the enclosure, 1.5d,

2.5d, and 3d, respectively. Hence, a total of six cases are studied. The initial condition of the particle is at

rest with its center at 0.9 cm from the bottom and at the center of the horizontal cross section.

The terminal velocity for a sphere settling in an infinite medium with the same fluid properties may be

easily obtained by using an empirical equation for the drag coefficient, such as the one derived by Abrah-

ram [1]:
Cd1 ¼ 24

9:062
9:06ffiffiffiffiffiffi
Re

p þ 1

� �2

: ð29Þ
For the problem at hand the terminal velocity of the sphere is 0.17 cm/s, and the Reynolds number,

based on the terminal velocity is Re = 1.07.

The effect of the walls is to increase the hydrodynamic drag and to slow down the sphere. For this prob-

lem we have several analytical and experimental data, which may serve for the validation of the computa-

tional method. The slowing may be thought of as an increase of the drag coefficient by a factor Kwall [16].

Since the Reynolds number in our simulation is low enough, one may use the Faxen [6] expression as an

approximation for this coefficient:
Kwall ¼
1

1� 1:004kþ 0:418k3 þ 0:21k4 � 0:169k5 þ � � �
; ð30Þ
where k is the ratio between the particle diameter and the width of the two parallel plates. Faxen�s correc-
tion factor is applicable for k < 0.5. For small Reynolds number flow, the drag coefficient that includes both

the inertia and the wall effects is approximated by the following expression [16]:
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Cd ¼ Cd1 þ 24

Re
Kwall � 1ð Þ: ð31Þ
The coefficient Cd in the above equation is the drag coefficient for a sphere setting between two infinite

plates at low Reynolds numbers. By applying this expression for the drag coefficient we calculated that the

terminal velocities are 0.12 and 0.13 cm/s for gaps of 2.5d and 3d, respectively. The corresponding values for

the highest velocity in our simulations are 0.113 and 0.124 cm/s. Given that in the simulations we also have

the effect of the bottom wall, that eventually brings the sphere to a stop, there is very good agreement be-

tween the results of the simulation and the settling process of the particle. When the width of the enclosure

is 1.5d (k = 0.667), the Faxen [6] formula cannot be applied and a higher-order approximation is needed. As
an approximation, we used the expression by Bohlin [3], which is applicable to cylindrical enclosures. For

the problem at hand and k = 0.667, the terminal velocity in a cylindrical enclosure would be 0.062 cm/s. As

would be expected, this is a bit lower than the value of 0.07 cm/s, which we obtained for the rectangular

enclosure in our simulations. These comparisons show that Proteus applied with particles where the diam-

eter is only 8 lattice units yields reasonable results, without the necessity for any calibration of the diameter

of particles a fact that further validates the numerical method.

Fig. 7 shows the settling velocities of the 6 cases considered here as a function of time. In all the cases

with solid boundaries (cases 1, 2 and 3), the particles reach steady state at approximately t = 2.5 s and then
begin to slow down because of the presence of the bottom wall. It is seen that with the same widths of 1.5d,

the settling velocity under the no-slip boundary conditions at the sidewalls (case 1) is much smaller than the

settling velocity under the periodic boundary condition (case 4). Actually, the maximum setting velocity in

case 4 is slightly larger (0.19 cm/s) than the terminal velocity of the sphere in an infinite medium, which is

0.17 cm/s. This is due to the periodic boundary condition: the flow field of the implied infinite array of

neighboring particles has a pulling effect on the particle and causes it to travel faster.
Fig. 7. The particle settling velocity as a function of time.
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The velocity profiles in cases 5 and 6, which have been obtained with the periodic conditions at the side-

walls, are very close to each other indicating that the influence from the implied neighboring particles be-

comes insignificant when the distance between their centers is longer than 2.5d. However, as mentioned

above, with the no-slip boundary condition at the side walls, the maximum velocity depends significantly

on the width of the enclosure. It is also found that the particles in cases 5 and 6 almost reach their steady
state before the effect of the bottom wall becomes significant. In this case, the maximum velocity is 0.16 cm/s,

a value that is very close to the terminal velocity for the particle (0.17 cm/s) in an infinite domain. All these

results are additional indications that the computational method and the parameters used in this simulation

yield accurate results.

Fig. 8 depicts the trajectories of the particles for the six cases considered here. Fig. 9 shows the velocity

vectors at the middle cross-section of the enclosure in cases 1 and 4. The same scales for velocity vectors are

used in both cases. It is apparent that the velocity field caused by the settling of the sphere is much more

profound in the case where periodic boundary conditions are used.
4. Sedimentation of 1232 spherical particles in a shallow box

4.1. Setup of the problem

In this section, we extend the simulation of the last case and use Proteus to study the sedimentation proc-

ess of 1232 spherical particles in a narrow enclosure. The initial setup of this problem is shown in Fig. 10.
The group of particles is initially packed in a closed three-dimensional box, 3.125 cm long, 3.125 cm high

and 0.09375 cm wide. The diameter of the particles is d = 0.0625 cm and, hence, the width of the box is 1.5d.

As in the previous case, the fluid density is qf = 1000 kg/m3, and the particle/fluid density ratio is 1.01. The

kinematic viscosity of the fluid is 0.001 kg/ms. The ‘‘safe zone’’ between particles for these simulations was
Fig. 8. The particle trajectories at various conditions.



Fig. 9. Sedimentation of a sphere in an enclosure with a gap =1.5d. Left: no-slip condition at t = 5 s. Right: periodic boundary

conditions, at t = 3 s. The same velocity scale is used.

Fig. 10. Initial positions for the 1232 spherical particles. The width of the plates is 1.5d.
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chosen to be equal to d/8. The stiffness parameters for the collisions are eP = 0.25, EP = 0.02 and eW = 0.5eP.
From the results presented in the last section, it is reasonable to conclude that Proteus will yield accurate

results with the parameters chosen for this simulation.

Initially, both the fluid and particles are stationary in an arrangement similar to closely-packed spheres,

with the heavier particles on top of the fluid. There are 28 lines of particles with each horizontal line having
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44 particles. The initial gap between two neighboring particles is d/8. The gap between the upper wall and

the first line of particles (line 1) is 3d/8. The gap between the left wall and the left-most particle of the odd

horizontal lines (lines 1, 3, 5, . . .) is 3d/8. The gap between the left wall to the left-most particle of the even

horizontal lines (lines 2, 4, 5, . . .) is 2d/8. The gaps at the right side are 2d/8 and 3d/8, respectively, for the

odd and even lines.
The numerical simulation box is 400 · 12 · 400 in lattice units, and the diameter of each particle is equal

to 8 lattice units. As in the last simulation, two boundary conditions will be examined in the width direc-

tion: (a) solid walls with no-slip boundary condition and (b) periodic boundary conditions, which imply an

infinite array of identical particles. The boundaries in all the other directions are solid boundaries with no-

slip velocity conditions. The relaxation time for the first case is s = 0.9915 and each lattice time step corre-

sponds to a physical time of 0.001 s; the relaxation time for the second case s = 0.74576 and each lattice

time step corresponds to a physical time of 0.0005 s.

All the simulations were conducted on a SGI Onyx 3500 machine. In the case of sedimentation with 1232
particles, the time to complete a single iteration is about 15.8 s. This results in approximately 4.3 h com-

putational time to simulate 1 s of physical time for the first case, or about 11 days to complete a simulation

of 60 s of physical time without any paralleling.

4.2. Sedimentation of 1232 particles with no-slip boundary conditions at all sides

As shown in the previous section, the small width between front and rear walls slows significantly the

particles. Figs. 11–21 are ‘‘snapshots’’ of the sedimentation process for these particles and also show the
flow velocity vectors at the central vertical cross-section of the flow field.

It is observed in this case with the no-slip boundary conditions applied at all sides that, the motion of the

particles is significantly retarded because of the presence of the sidewalls. The whole arrangement moves

downwards and the upper part of the enclosure becomes clear within 50 s from the commencement of
Fig. 11. Particle positions at t = 5 s.



Fig. 12. Particle positions at t = 10 s.

Fig. 13. Particle positions at t = 15 s.

Z.-G. Feng, E.E. Michaelides / Journal of Computational Physics 202 (2005) 20–51 39
the process. The groups of particles in the sides settle a little faster and reach the bottom faster on the sides

of the container. Although there are such perceivable indications of a Rayleigh–Taylor type instability

[9,14], its effects are not significant as in the case of the two-dimensional simulations.



Fig. 15. Particle positions at t = 25 s.

Fig. 14. Particle positions at t = 20 s.
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4.3. Sedimentation of 1232 particles with periodic boundaries in the transverse direction

The case of the simulation of infinite arrays of three-dimensional spheres is closer to the two-

dimensional case that was studied by Glowinski et al. [14] and Feng and Michaelides [9]. Periodic



Fig. 17. Particle positions at t = 35 s.

Fig. 16. Particle positions at t = 30 s.
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boundary conditions are applied to the walls in the transverse direction that defines the narrow enclo-

sure. The effect of these conditions is to introduce implied neighboring spheres and, in the case of a sin-

gle sphere, these neighbors exert a pulling effect that causes the sphere to settle faster. Figs. 22–32 show



Fig. 18. Particle positions at t = 40 s.

Fig. 19. Particle positions at t = 45 s.
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Fig. 20. Particle positions at t = 50 s.

Fig. 21. Particle positions at t = 55 s.
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a series snapshots at different times of this process, together with the velocity vector field in the cen-

tral vertical cross-section. The scale used for all the velocity vectors in the figures is half of the scale

used in Figs. 11–21.



Fig. 22. Particle positions at t = 2 s.

Fig. 23. Particle positions at t = 4 s.
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It is evident in this simulation that there are very strong effects of a Raleigh–Taylor instability. Two large

vortices form at the sides of the enclosure and, while they assist the particles on the sides to settle faster,

they also levitate particles at the center and this motion results in the ‘‘lifting’’ of the particles at the middle



Fig. 24. Particle positions at t = 5 s.

Fig. 25. Particle positions at t = 6 s.

Z.-G. Feng, E.E. Michaelides / Journal of Computational Physics 202 (2005) 20–51 45



Fig. 26. Particle positions at t = 7 s.

Fig. 27. Particle positions at t = 8 s.
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Fig. 28. Particle positions at t = 9 s.

Fig. 29. Particle positions at t = 10 s.
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Fig. 30. Particle positions at t = 15 s.

Fig. 31. Particle positions at t = 20 s.
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Fig. 32. Particle positions at t = 30 s.
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section of the enclosure. The upward motion of the particles still persists at 15 s and it takes considerably

longer for the upper part of the enclosure to become clear of particles. This type of Rayleigh–Taylor motion

is very similar to the two-dimensional motion that was observed in the computations of Glowinski et al.
[13].
5. Conclusions

An efficient three-dimensional computational method, Proteus, which is based on the lattice Boltz-

mann method the immersed boundary method and the direct forcing scheme, has been developed for

use with large groups of particles. This method combines desired characteristics of the three computa-
tional methods to achieve higher efficiency and accuracy. Proteus computes the force term directly and

does not require the use of any other coefficients as additional parameters. Compared with the conven-

tional LBM, the new method provides a smooth computational boundary at comparable computational

cost. While it has the same order of accuracy as the LBM, Proteus is capable of achieving results at

higher Reynolds numbers and, if needed, to easily enforce the rigid body motion in the interior of

the particles. Proteus is also easier and more efficient to be used when the particles do not have a simple

shape.

The new method has been validated by comparison with results from the simulations of the motion of
single spheres settling in an enclosure with analytical and experimental results that were derived in the past.

The method has been successfully applied to the sedimentation problem of an arrangement of 1232 spheres

in a narrow enclosure under two different boundary conditions. The results show that the new computa-

tional method yields accurate predictions for large groups of interacting particles and that it is a very effi-

cient and promising technique to be applied to particle–fluid interaction problems.
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